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ABSTRACT

The objective of the work reported herein was to determine the
strength and stress-strain characteristics of rocks of four types
under various rates of loading. This was accomplished by conduct-
ing slow (specimens loaded at rates of less than 2,251 psi/sec) and
rapid (specigens loaded at »rftes greater than 2,251 psi/sec) uncon-
fined compression tests, tensile splitting tests, and triaxial com-
pression tests utilizing confining pressures ranging from 250 to
5,000 psi. Granite, basalt, limestone, and tuff from the Atomic
Energy Commission's Nevada Test Site, Mercury., Nevada, were used in
this program. Nondestructive tests such as specific gravity, poros-
ity, and compressional wave velocity were conducted on all specimens
to determine homogeneity of each rock. Results of nondestructive
tests indicated that the rock within each rock type was quite uni-
form. Results of the unconfined compressive strength tests on basalt
indicated that as the loading rate was increased from 1 to 1.60 x 107
psi/sec, ultimate strength, total axial strain, and Young's modulus
of elasticity increased. Total diametral strain decreased as load-
ing rate was increased. Results of triaxial tests indicated that the
maximum deviator stress and total axial strain increased as the con-

fining pressure and loading rates were increased. Apparently, loading

rates from 1 to 2,250 psi/sec do not have a significant effect on the

o0
. = e, O ;.- . Y . PR 2
A A A i aa. S v pis e B
e Hir s ey - xad
il P et e i - 0 St =l B
ERTpEl e S NIRRT BRI

.
DR




angle of interral friction and cohesion of basalt at confining pres=

sures up to 5,000 psi. Compressional wave velocities recorded in ﬁhﬁ sl

©

direction of applied stress increased sharply within about one-ﬁalf '
of the maximum deviator stress and then generally remained constent
to failure. The difference in the unconfined compressive strehgth
between the slow and the rapid rates of loading for the rocks tested
varied considerably. The dynamic comprégsive strength factor for th¢
granite was less than 1; for the basalt, 1.35; for the limestone,
1.52; and for the tuff, 1.74. The compressional wave velocity of
rock is affected by increases in both the applied axial stress and
confining pressure. Velocities recorded in the direction of applied
stress increase sharply within about one-half of the maximum deviator

stress and then generally level off until failure.
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PREFACE ' .

The study reported herein was sponsored by the Defense Atomic
Suppdrt Agency and funded under the Nuclear Weapons Effects Research
Program Subtask 13.191A, "Rock Mechanics Research Relating to Deep
Underground Protective Construction."

The work was conducted gduring the period Octoter 1965 through
October 1967 under the direction of Mr. Bryant Mather, Chief, Concrete
Division, U. S. Army Engineer Waterways Experiment Station (WES).

The iﬁvestiga.‘cion was conducted under the direct supervision of
Messrs. J. . Polatty, Project Officer, W. O. Tynes, and R. L. Stowe.
Messrs. J. L. Drake and J. R. Hossley of the Nuclear Weapons Effects
Division, WES, conducted the rapid loading tests. Mr. Stowe, who
was project leader, prepared this report.

Directors of WES during the conduct of this study and the prepa-
ration of this report were COL John R. Oswalt, Jr., CE, and

COL Levi A. Brown, CE. Technical Director was Mr. J. B. Tiffany.
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NOTATION

Area

Cohesion or shearing stress

Length of specimen, feet

Young's modulus of elasticity
Tangent Young's modulus at one-half the ultimate compressive
strength

Dynamic compressive strength factor
Specific gravity of solids

Bulk specific gravity

Force

Pulse traveltime, milliseconds
Shearing stress

Pore pressure

Velocity

Compressional wave velocity

Change in axial strain

Change in axiel stress

Axial strain

Diametral strain

Unit volumetric change

loading rate, psi/sec
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b Poisson's ratio

. o Applied axial stress, maximum deviator stress, or total

normal stress
¢' Effective stresses
o Major principal stress
95 Intermediate principal stress

03 Confining pressure, lateral pressure,’or minor principal

stress

¢ Angle of internal friction




e T T e e

metric units as follows.

CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT

'i_ﬁithh,mits of measurement used in this report can be converted to

.
S

x)ounds per square inch 0.070307

pounds per cubic foot  16.0185
- foot-pounds 0.138255
feef per second 0.3048

l@u}.tiply By To Obtain
4nches 2.54 centimeters
feet 0.3048 meters
younds 0.45359237 kilograms
kips 453.59237 kilograms

kilograms per square
centimeter

kilograms per cubic meter
meter-kilograms

meters per second

L
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

There has been, and still is, a great need for information con-
cerning the strength and stress-strain characteristics of rock under
various rates of loading ¢ . This is particularly true for
protective-construction purposes. For design purposes, it is neces-
sary to know the mechanical properties of rock since they are used to
predict and control the behavior of the in situ rock mass. Past
studies of metals, concrete, and, to a small extent, rock have shown
considerable streagth and deflection changes when the rate of loading
was increased.

There are two general approaches to the study of rock proper-
ties. The approach used for the work reported herein was one in
which intact specimens were extracted from the joint blocks and
tested in the laboratory. The results obta’ned are realized to be an
upper (or lower) limit of the in situ strength value that would apply
only if the in situ rock had no discontinuities. However, all rocks
possess various discontinuities, and a strength reduction factor must
be applied to modify appropriately the results obtained in the labora-
tory. It is understandable that the reduction factor is a function

of the kind, spacing, orientation, and physical character of the

15
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ostural discontinuities present. There is no reduction factor pre-

gented in this report.

The second approach to the study of rock properties is that of
field testing the rock in situ. ' In this testing environment, the
test area should be sufficiently large so that the effect of discon-
tinuities enters into the results. This type of testing is neces-
sarily large-scale and expensive. Because of the expense, quite
otten only a few tests may be conducted, and the results may not be
étatisticalm significant. This is a good reason for conducting
extensive laboratory testing in which the expense is low and the
nunber of tests large. However, efforts should be made to correlate
felnlts of laboratory and in situ tests. If this is not done, the

lsboratory test results could be meaningless.

1.2 OBJECTIVE AND SCOPE

The objective of the research reported herein was to determine,
under s wide range of loading rates, the streagths and stress-strain
properties of rock specimens belonging to four rock types. The

strength and stress-strain properties were determined in both an un-

RS
PR

confined state and a confined state under confining pressures up to

= bt 5,000 psi.l A laboratory test was devised using a triaxial chamber
’ A table of factors for converting British units of measurement to
metric units is presented on page 12. -
16
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and sonic equipment in an effort to simulate the field in situ,qttg;g

conditions. This test will be discussed in detail later. Théjobaggig

e

; o 9%
tive was accomplished by: (1) a literature survey that consisted of 8 “'%Q?

o M

review of ¢ collection of available experimental rock property da@a

from tests on rock and information regarding details of the part;cﬁlar B

testing techniques used; and (2) a laﬁoratory study that consisted of

nondestructive and destructive testing of four rocks from the Atomic

Energy Commission's Nevada Test Site (NTS) at Mercury, Nevada; the

rocks were granite from the Operation Flint Lock, Shot Pile Driver

Experiment, dense basalt from Buckboard Mesa, limestone from the Flat

Top Experiment, and tuff from the Red Hot-Deep Well Experiment. The

nondestructive tests run on all rocks consisted of bulk dry specific

gravity, specific gravity of solids, porosity, and compressional wave !

velocity tests. The destructive tests consisted of tensile splitting 1

strength, slow2 unconfined compressive strength, Young's modulus of Y J
.4

elasticity, Poisson's ratio, triaxial compressive strength, and

3

rapid” unconfined compressive strength tests. A few direct tension

tests were run on the granite only.

"Slow loading" in this report denotes that specimens were loaded

at rates less than 2,251 psi/sec.

"Rapid loading" denotes that specimens were loaded at rates

greater than 2,251 psi/sec.

17
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'During‘the' literature survey, particular attention was given to

-jme ngticles and papers that perta.ined to the following: (1) the

‘effect of loading rate on stress-strain properties, strength, and

(2) the effect of. confining pressure on stress-

Itrnin st failure;

strain propertiel, strength, and strain at failure; and (3) the

=effg¢t, of confining pressures on the compressional wave velocity
of rock

| 1.3 LITERATURE SURVEY
From the available literature, it is evident that not many pre-

vious 1nvestiga.tors have been concerned with the effect of loading

and strain at failure

rate on the atress-strain properties, strength,

The articles found concerning this effect (References 1

t an increase in the loading rate

of rock.
through 3) generally indicated tha
jmate unconfin-:d compressive strength
gs-strain property). Data

i!_lcreaaed the ult and increased

+he Young's modulus of elasticity (a stre

h increased loading, such as impact and sonic
dulus of elasticity can in-

from other tests wit

tests, show that the strength and Young's mo

crease by as mich as & factor of two (Reference L). Figure 1.1 is &

ress rate versus ultimate strength that shows a considersble

the stress rate is increased from

plot of st

jncrease in ultimate strength when

The maximum stress rate used for the rapid

10 to about 1011 psi/sec.

testing reported-herein was avbout 10r‘ psi/sec. Figure 1.2 shows the

18
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dependence of the stress-strain curve on time of loading and shows a
decrease in strain at failure when the stress rate is increased
(Reference 4). Results of the research reported herein show that
this is not always true.

There were many articles found during the literature survey that
dealt with the effect of confining pressure on stress-strai- proper-
ties, strength, and strain at failure for a wide range of rock
(References 5 through 15).

References 5 and 6 present the works of some of the first inves-
tigators who attempted to determine the effect of confining pressure
on the strength of rock. These early investigators applied axial
loads to rock samples that were encased by a very tight-fitting steel
Jjacket. A drawback to this method of confining samples weas that the
steel jacket restricted the lateral expansion of the rock, and a pres-
sure normal to the axis of loading was created at the rock-steel
boundary. The results of these investigations can be summarized by
stating that the ultimate strength ard ductility of rock increase
with increased confinement (Reference 7). However, due to the type
of constrainment of the samples, no exact relation between confining
pressure and increased strength could be established.

In 1911, the inherent inadequacies of steel-jacketed testing of
rock samples were recognized and worthwhile improveinents were msde,

both to the testing apparatus and the method of constraining the rock

19




{Reference 8). From tests on marble and sandstone, a relation be-
tween confining pressure and rock strength was established. The re-
sults of these tests were presented in terms of Mohr's circles, from
which it was concluded in Reference 8 that: (1) rock strength is
greatly increased by a lateral cénfining pressurc, and (2) Mohr's
theory can be used to represent triaxial test data on rock. Since
the early 1900's, investigators have made extensive refinements

both in testing apraratus and method of jacketing samples; however,
the conclusions drawn in Reference 8 remain basically unchanged. In .
almost all the work referred to in References 5 through 15, it was
found that both axial and lateral strain increased with increasing
confining pressure on rock samples. The increase of compressive
strength caused by confining pressure is many times higher than that

caused by increased stress rates (Reference L4).

Many investigators have been concerned with the effect of con-
fining pressures on the compressional wave and shear wave velocities
of various rocks (References 16 through 31). Most of the early work
was conducted in the interest of geophysical problems in which the
interpretation of seismic velocities in petroleum exploration was most
important., However, in the late 1930's, laboratory measurements were
madc of elastic waves in rock (Reference 16). In the 1950's, new
developments in pulse circuitry, fast-writing oscilloscopes, and other

electronic equipment were used to investigate wave velocities in rock

20
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as well as in many other materials (References 18 through 2k).

One way to investigate wave velocities in rock as affected by
pressure is to record velocities in three different orientations at
right angles to one another. This adequately indicates the degree
and variations of anisotropy of the material. In some of the more
homogeneous rocks, the three velocities are within a few percentage
points of one another; this is true for equigranular rocks. In
schistose and bedded rocks, velocities can vary up to 25 percent,
depending on orientation. The greatest controlling variable of ve-
locity appears to be the density of the material (Reference 25). It
is stated in Reference 25 that, except for the most conpact rocks,
little significance should be attached to the velocities for pres-
sures below 500 bars (7,250 psi); they are not reliably reproducible
to better than 10 percent.

The Qelocities recorded in the direction of applied stress for

almost all rocks increase toward failure and ususlly remain constant

at failure. Velocities recorded normal to the applied stress in most

rocks increase sharply, level off, and then decrease toward failure.
A logical reason for this is given in Referenc: 27. When a specimen
begins to fail, internal vertical cracking normally develops. Al=-
though the velocities parallel to the load are not affected by the

cracks, the velocities normal to the cracks must travel around the

cracks and are, therefore, slower. Figure 1.3 shows the variation of

21
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wave velocities with stress in the axial and the transverse direc-
tions under various confining pressures.

In the literature search, a considerable amount of rock prop-
erty data was found concerning a wide range of physical properties of
different rock types. A tabulation of these properties has been com-
piled and will be published separately from this report. The tabula-
tion contains 58 different physical properties along with some ratios
of physical properties. This table was compiled as a reference

source for those working in the field of rock mechanics.
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CHAPTER 2

MATERIALS AND TEST METHODS .

2.1 ROCK TYPES

The four rock types used in this program were to meet the fol-
lowing criteria: (1) they were to be taken from sites where weapons
.,eata had been performed or were to be performed, and (2) they were
to fit roughly into the strength classification system (Engineering
Classification of Intact Rock) developed at the University of Illi-
nois (Reference 32). The rocks are classified according to their un-
confined compressive strength into five groups. Group A is for very
high strength rocks, above 32,000 psi; Group B is for high strengta
rocks, which range from 16,000 to 32,000 psi; Group C is for medium
strength rocks, which range from 8,000 to 16,000 psi; Group D is for
low strength rocks, which range from 4,000 to 8,000 psi; and Group E
18 for very low strength rocks, which range from zero to 4,000 psi.

Granodiorite (granite) from the Operation Flint Rock, Shot Pile
Driver Experiment at the NIS, taken from depths of 11.1 to 1,759.9
feet, waé used for both Groups A and B. | The unconfined compressive
strength of ‘the rock varied from about 19,000 to 3L4,000 psi; this
made it necessary to classify the rock under both Groups A and B.
The rock was & light gray, dense, coarse-grained, unweathered grano-

diorite. According to the classification system presented in
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Reference 33, this rock is called a gfanodiorite or granite. The
rock will be referred to as a granite in this report. Plagioclase
feldspar having an average composition i!n the high oligoclase-low
andesine range, orthoclase, and quartz were the most abundant con-
stituents. Biotite, some of which was in the process of altering to
chlorite, was present in moderate amounts. Accessory minerals pres-
ent in very minor amouats were sphene, an amphibole, an epidote- ;
group mineral, pyrite, and magnetite. Small patches of pyrite were
disseminated throughout the rock and were present, along with quartz,
in sealed fractures.

Dense basalt from Buckboard Mesa, NI'S, taken from depths of 13.2
to 157.1 feet was used for Group B rocks. The rock was a light gray,
dense, fine-grained, unweathered basait or subandesite, and was com-
posed of plagioclase feldspar, with lesser amounts of pyroxene, oli-
vine, and magnetite.

Limestone from the Flat Top Experiment, NTS, taken from depths
of 5.5 to 82.0 feet, was used for Group C rocks. The rock was a
light olive-gray, dense, very fine-grained limestone containing some
stylolite seams. The seams were not planes of weakness within the
rock but were areas of concentration of the relatively insoluble
part of the limestone; X-ray diffraction analysis indicated that the

material was composed of clay mica (illite) and quartz. In thin
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ue{;im, the rock consisted of fine-grained calcite and coarser

dolomite. The rock contained 30 to 40 percent dolomite,
tightly cemented.

and was

Tuff from the Red Hot-Deep Well Experiment, NTI'S, taken from
depths of 0.0 to 76.0 feet, was used for Group E rocks. The rock

iaried in color from a light greenish-yellow, to a brownish-red, to

a dark red. Tt was composed of volcanic ash and was fairly well

welded.

2.2 SAMPIE PREPARATION

The rock cores used for this program were NX (2-1/8-inch diam-

eter) in size. The cores were cut to have a length-to-diameter

(/D) ratio equal to two using a diamond-blade, nasonry-rock saw.

After the cores had been cut to proper size, the ends were surface

ground with a machine shop surface grinder. The core ends were then

hand lapped with No. 320 Carborundum abrasive to obtain Plane end
surfaces; the end surfaces were within 0.001 inch planeness, were

parallel to each other within 0.006 inch, and were perpendicular to
the sides within 0.5 degree.

2.3 STRAIN GAGES

The rock cores tested in unconfined and confined compression had
six 13/16-inch-long electrical-resistance strain gages bonded to the

core; three gages were placed vertically 120 degrees apart, and tiree
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were placed horizontally 120 degrees apart. All gages were lorated
at the midpoint of the core, and had a resistance of 120.4 + 0.2 ohm,

and a gage factor of 2.01 + 0.01 percent.

2.4 NONDESTRUCTIVE TEST METHODS

Sl ek b

In order to obtain nearly homogeneous specimens for destructive

testing, a series of nondestructive tests was performed on all rock

r cores. The tests included bulk specific gravities, specific gravi-

| ties of solids, porosities, and compressional wave velocities. The
% ! bulk specific gravity of a rock core is the ratio of the weight in air _@

of its volume of permeable material at a stated temperature to the

weight in air of an equal volume of distilled water at a stated tem- .
perature. The specific gravities determined for the granite, basalt,

and limestone were ovendry determinations; the tuff specific gravity

was an as-received determination. The specific gravity of solids in
| ' rock is the ratio of the weight in air of a given volume of solids
! . at a stated temperature to the weight in air of an equal volume of
distilled water at a stated temperature. The rock pcrosity value
was obtained by using the specific gravity values as follows: 1
G -G
s

0
- X 100%

s
where;
Gs is the specific gravity of sclids, and ;

Go is the bulk specific gravity. }
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A through-sample method is used %o measure compressional wave

yelpcity. A transducer is coupled to each end of the sample by a

im of silicone grease. The transducers used in this investigation
vere barium titanite with a lower resonant frequency of 1 Mc/sec. A
pte'sme impulse is imparted to the sample from the expansion of a
tra.hsdncer caused by a step in voltage being applied to the trans-
dncer The incidence of the tranasmitted ﬁressure impulse on the re-
ceiving transduce: generates a voltage signal indicating this arrival.
These signals are displayed on an oscilloscope and compared with a
signal from a crystal-controlled, time-mark generator for determining
the transit time through the sample. JFrom this measurement of time
and the known transmissive-path length, the compressional wave veloc-
ity can be computed.

2.5 DESTRUCTIVE TEST METHODS

| The slow tests consisted of tensile splitting, direct tensile,
uncox}fined compressive strength, and triaxial compressive strength
tests using compressional wave velocity equipment. The tensilz split-
ting tests were conducted in accordance with Test Method CRD-C 77-61
of Reference 3li. The unconfined compressive strength tests were cone
ducted in accordance with Test Method CRD-C 19-65, except that the
specimen ends had closer tolerances. Three specimens each of gran-

ite, basalt, limestone, and tuff were loaded at a rate of SO. psi/sec.
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Based on nondestructive and destructive test results, the basalt rock
was selected for extensive confined and unconfined compressive test-
ing; that is, loading rates of 1, 500, and 2,250 psi/sec for confined
tests and 1, 500, 2.00 X 10, 3.00 x 10°, and 1 x 107 psi/sec for un-
confined tests. The triaxial compressive:strength tests were con-
ducted in accordance with Test Method CRD-C 93-6l4, except that com-
pressional wave velocity equipment was used to determine the effect
of axial and lateral pressures on compressional wave velocities
through the long axes of the samples.

The principle of triaxial testing is summarized briefly as
follows. A cylindrical specimen encased in a flexible membrane is
placed in a triaxial chamber. subjected to a constant lateral fluid
pressure, then loaded axially to failure. The flexible membrane ex-
cludes the fluid from the specimen, thereby maintaining a constant
degree of saturation of the specimen during the test. At least three
specimens, each under a different lateral pressure, are tested to
failure to establish the relation between shear strength and normal
stress. During the application of axial load, the major principal
stresn cl is equal to the applied axial stress oo = R/A) where
P equals force and A equals area plus the lateral pressure 03 c
The applied stress is termed the deviator stress. The intermediate

principal stress o, and the minor principal stress 03 are sssumed

to be identical and are equal to the lateral pressure used in the test.
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Confining pressures of 250, 1,000, and 5,000 psi were selected as

feasonable pressures for the triaxial testing;

The method of using wave velociiy apparatus in conjunction with
triaxial equipment is relatively new. Figure 2.1 is a sketch show-
ing the triaxial chamber and the accessories used inside the chamber
for velocity determinations. The measurement of velocity through the
rock sample is accamplished in a manner similar to the measurement
described for the unconfined samples. However, in the chamber it is
necessary to use end plates (housing the transducers) and bearing
plates, which allow for a size reduction to the NX size samples. In
this study, eluminum end plates and bearing plates were used because
the impedance of aluminum is closer to that of most dense rock than
any other material available. The traveltime through the end plates
and the bearing plates is accurately measured prior to testing; this
traveltime is the delay time that is subtracted from the traveltime
through the plates and rock sample. The equation V = % was used to
obtain the compressive velocity where V 1is the velocity, 4 1is the
length of the specimen in feet, and t is the pulse traveltime
through the sample in milliseconds.

Commercially available barium titanite transducers were used
with no change except for light hand lapping of the flat surfaces
to ensure even contact. A light film of oil was applied to the

core end surfaces to fill any small irregularities that may have
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been present on the specimen ends. The aluminum plates were the
wrought-type No. 14 S-T having a yield strength in compression of
60,000 psi and a modulus of elasticity of 10.6 x 1o6 psi. Connec-
tions between the transducers and the recording equipment were made
with coaxial cables; 50-ohm cables about 0.08 inch in diameter were
used.

A Hewlett-Packard 212-A square-wave voltage generator was
altered to produce a peak voltage of 200 volts. This was needed for
the longer transmission path. The oscilloscope used was a Tektronix,
Tyre 551, dual beam, with a Tektronix 1121 amplifier. This system
was sufficient for detection of the low-level signals produced at the
receiving transducer over the increased transmission length. A Tek-
tronix 181 time-mark generator was used to measure pulse length.

The rapid tests were accomplished using two separate testing
apparatuses, a drop-tower facility and a hydraulic-operated 200-kip
loader. The drop-tower facility had a capability of 2,012 ft-1b of
energy, and consisted of a falling mass weighing 384 pounds guided by
two cylindrical steel columns. The mass was remotely triggered and
allowed to fall free from a predetermined height. Friction brakes
built into tne falling mass prevented any rebound of the mass after
impact. A 200,000-pound-capacity SR 4 type load cell, two single-
sweep dual-beam oscilloscopes, and two Polariod cameras were used to

record the stress-strain traces. A 0.5-inch-thick piece of Celotex
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was placed on top of the rock sample to mitigate the pulse. The tuff
rock was tested using the drop-tower apparatus.

The 200-kip loader consisted of a large hydraulic actuator and
a rigid support system as shown in Figure 2.2. The actuator is pres-
surized with a low-volume, high-pressure multiplier. The actuator
has three pressure chambers producing pressure above the piston,
below the piston, and between the rupture disks. The rupture disks
perform the task of a rapid-opening valve. The machine is pres-
surized by slow buildup of pressure above and below the piston while
a slight preload on the specimen is maintained. Concurrentl&, pressure

is built up i1 the volume between the two rupture disks; the pressure

" between the rupture disks is maintained at exactly one-half the pres-

sure below the ram, thereby enabling half the total pressure below the
piston to be supported by the first rupture disk and the remaining
half of this totel pressure to be supported by the second rupture disk.
When the machine is triggered, the rupture disks burst and move the
loading ram onto the specimen, which is positioned below the ram.

This loader is capable of applying a 200,000-pound force to a
rigid specimen with rise time: of approximately 1.5 msec; lunger
rise times can be created by piacing a suitable orifice upstream
of the rupture disk assembly. The slowest loading rates obtained
to date have been about 2.0 X 10° psi/sec. Total stroke of the

ram is 4 inches.
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The load is measured above and below the test specimen by means
of strain-gaxe type load cells. Accelerations are measured above and
below the specimen by means of commercial-type accelerometers., The
outputs of all the sensing devices are recorded simultaneously cn a
multichannel, magnetic tape recorder and later played back using a

light-beam galvanometer oscillograph.
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Figure 2.1 Triaxial chamber with transducers.
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CHAPTER 3

PRESENTATION AND DISCUSSION OF RESULfs

Visual appearanée and physical test results, particularly the
nondestructive results, indicated that within each rock type the
rocks were reésonably uniform. The variations in test data within a
rock type are best explained by (1) the slight change in mineral con-
tent and inherent structure from one sample to the next; (2) the dif-
ference in specific gravities; (3) the difference in porosity; and
(4) the chance for human error in sample preparation and in conducting
the tests.

Due to the limited supply of granite rock cores, it was necessary
to use’pores from six different boreholes. The basalt cores were ob-
tained?frap eight different boreholes; however, the depth interval
from ﬁﬁich the}” were taken was small. Based on a visual examination
and an analysis of the nondestructive properties, the basalt cores
were deemed very nearly the same. The limestone cores were taken
from three separate boreholes, and the tuff cores were taken from
one borehole.

Forty pieces of granite core were visually examined, and based on
texture, presence or absence of fractures, gross grain size, and
whether the cores were weathered or altered, 25 pieces were selected

for nondestructive testing. Based on an analysis of the nondestructive
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properties of the cores, 13 samples were used for destructive testing.
Thirty-nine basalt samples were selected for nondestructive testing,
from which 31 samples were selected for destructive testing. Twenty
samples of limestone were tested for nondestructive properties, from
which 12 were vsed for destructive testing. Thirty-one tuff samples
were tested for nondestructive properties, from which 12 samples were
useé for destructive testing. Tables 3.1 through 3.4 list the nonde-
structive and destructive properties of the granite, basalt, lime-
stone, and tuff, respectively. A summary of the nondestructive physi-

cal properties is given in the following paragraphs.

3.1 NONDESTRUCTIVE TESTS

The range in bulk specific gravity, the difference between the
low and high specific gravity values, the average specific gfavities,
and the density difference are given in the following tabulation for

the four rock types tested. Similar data with regard to specific :

Rock Type Range of Bulk Difference Average Bulk Density
Specific Gravity Specific Gravity Difference

pef
Granite 2.66 to 2.71 0.05 2.69 3.11
Basalt 2.65 to 2.77 0.12 2.70 7.35
Limestone 2.68 to 2.72 0.04 2.70 2.55
Tuff 1.89 to 1.98 0.09 1.92 5.73
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gravity of solids are given below for the four rock types tested.

Rock Type Rgnge of Difference Average Specific  Density
Specific Gravity Gravity of Solids Differernce
of Solids

pef

Granite 2.68 to 2.71 0.03 2.69 2.18

Basait 2.81 to 2.84 0.03 2.83 1.68

Limestone 2.70 to 2.73 0.03 2.72 1.93

Tuff 2.33 to 2.49 0.16 2.39 9.90

Tbe range in the calculated porosity for the granite was 0.10 to
0.75 percent or a difference of 0.65 percent; the average porosity for
the 20 sgmples selected for destructive testing was 0.30 percent. The
range in the calculated porosity for the basalt was 3.07 to 5.37 per-
ceﬁt; the average porosity for the 16 samples selected for destructive
testing was 4.60 percent. The range in the calculated porosity for
the limestone was 0.18 to 0.85 percent; the average porosity for the
13 samples selected for destructive testing was O.46 percent. The
range in the calculated porosity for the tuff was 15.90 to 23.30 per-
cent; the average porosity for the 12 samples selected for destructive
testing was 19.82 percent.
' The compressional wave velocity was the only nondestructive phys-

ical property that varied greatly for the four rock types. The
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following tabulation gives the range in velocity, the difference, and

the average velocity for those rock samples that were destructively

tested.

Rock Type Range in Compressional Difference Average Compressional

Wave Velocity Wave Velocity

£t /sec ft /sec £t /sec
. Granite 17,400 to 19,440 2,040 18,450 i
‘ Basalt 15,270 to 17,760 2,490 16,630 !
Limestone 19,885 to 22,320 2,435 20,710 %
i Tuff 6,597 to 8,810 2,213 7,890 ?

The reproducibility of the compressionel wave velocity through

the aluminum transducer holders and of thg,electronic components used

in conjunction with the transducers was cﬁecked and found to be very i
% good. The difference in the velocity, later referred to as the deiay i
| velocity, of the aluminum holders for & series of nine readings was y
less than one percent. ,!

Prior to testing the cores for compressional wave velocities, a
granite and a basalt sample were tested for reproducibility of wave ¢

velocities. A series of six velocities was recorded for each sample;

AT

this was accomplished by placing the core between the transducers, re-

cording the velocity, and then removing the core. The difference in

the velocities for the granite was 2.6 percent and for the basalt was

h
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3.0 percent. This difference is attributed to the fact that the first
signal arrival is not sharply defined on the oscilloscope trace. In
most cases, however, the signal was fairly sr--p: Figures 3.1 and 3.2

are typical photographs of the wave velocity trace recorded for the

four ro~k types used in this work. The signal arrival for the tuff

samples was less distinct than that for the other three rock types.

3.2 DESTRUCTIVE TESTS
The average results of three tensile spiitting tests-for the four

rock types are given below.

Rock Type Average Direct Range in Ratio of Cdmpressive
Tensile Tension Strength Strength to Tensile
Splittirg Strength at SO-psi/ sec
Strength Loading Rate

psi psi psi

Granite 1,700 1,700 380 12:1

Basalt 1,900 -- 300 13:1

Limestone 1,210 -- 390 9:1

Tuff 170 -- 120 10:1

Direct tension tests (pull tests) were conducted on the granite
in order to compare direct tension results with the results of the
tencile splitting test (see Figure 3.3 for stress-strain test results).

A comparison of the average strengths obtained from these two tests

k2
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shcws that the average strengths are identical; however, the range of
individual data is greater for the tensile splitting test than for the
direct tension test There is very little J°ta from which to conclude
any distinct advantage of one method of teunsile testing over the other;
however, the test results indicate that the direct pull method is more
consistent. Togically, the direct method should give a truer tensile
strength because when the sample is pulled, it will fail along its
weakest plane, wherever that plane may be. In the tensile splitting
test, the plane selected Tor testing need not necessarily be the
weakest. The modulus of elasticity in tension is quité close to the
modulus calculated for specimens tested in unconfined compression.
There were three static unconfined compreésive strength tests
conducted for each of the four rock types at a loading rate of

50 psi/sec. The basalt was then tested at 1, 500, 2.00 X 1 5,

3.13 X 106, 1.29 X 107, 1.34 X 107, and 1.60 x 10 psi/sec. A modulus

of elasticity E and a Poisson's ratio p were calculaied for each

unconfined compression specimen tested. The mocdulus of elasticity is

_ Ao
Ae ?
)

where Ag 1is the change in axial stress, and Aea is the change .

a value calculated at one-half the ultimate strength, i.e., E

axial strain. Poisson's ratio is also calculated at one-half the ulti-
€

mate strength, i.e., u = Eg , Where €, is the axia.. strain and
a

is the diametral strain. The modulus of elasticity and Poisson's

€4
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ratio calculated for the twelve unconfined compression tests are given
in Tables 3.1 through 3.k.

The modulus of elasticity values calculated for the static uncon-
fined compression tests run on the granite rock compare quite closely
with the in situ values reported in Reference 35. The work in Refer-
ence 35 was conducted on rock similar to that tested in this investi-
gation. The average modulus values for Sites 1 and 2 of-Reference 35
were 8.91 X 106 and 9.73 X lO6 vsi, resrectively. Th~ average modulvs
for the granite cores tested during this project was 10.70 X 106 psi.

The unit volumetric strain was also calculated for the unconfined
compression and the triaxial compression tests reported herein. This
value was plotted with the stress versus axial and diametral strain
curves to determine at what stress level the instantaneous rate of
change of vol'metric change is zero; the volumetric change is zero
when the slope of the volumetric strain curve changes sign. Unit vol-
umetric strain was also plotted to determine if it could be correlated
with a significant change in compressional wave velocity on the devia-
tor stress versus compressional wave velocity curve. It was felt that
when the volumetric strain was constant, possibly indicat;ng that in-
ternal microcracks were closed, the compressional wave velocity might
be at its highest level. The results of this comparison will be given

with the discussion of triaxial testing. According to the theory of

elasticity, the unit volumetric change is given by:

4l
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where pu 1is the Poisson's ratio and E is the modulus of elasticity
taken at one-half the ultimate compressive strength.

The tuff samples tested in unconfined compression at natural
water conteiit had compressional wave velocities Vp recorded parallel
to the applied stress at various increments of applied stress. These
tests were conducted in order to compare the change in velocity in the
unconfina? .,*:te with the change in velocity in the coufined state,
i.e., in the triaxial compression test. Figure 3.4 shows the change
in compressional wave velocity with a change in the axial stress for
the tuff samples, and Figure 3.5 shows the Vp data obtained from
triaxial testing. A comparison of Figures 3.4 and 3.5 shows that the
compressional wave velocity of tuff is affected more by combined
stresses Gl and 03 than by axial stress alone. The average initial
velocity for samples tested in unconfined compression (Figure 3.4) was
6,980 ft/%ec, while the average velocity for these samples at failure
was 8,300 ft/sec. This was an increase due to axial loading of
1,320 ft/bec. The average initial velocity for samples tested under
combined stresses was 7,3HO ft/%ec, while the average velocity at fail-

ure up to 1,500 psi, o, , was 9,130 ft/sec. This was a 1,790-ft/sec

3
increase. The compressional wave velocity increased faster under com-

bined stresses than under axial stress only. This was due to the fact
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that a confining pressure tends to consolidate the specimen uniformly,
thereby closing internal cracks and causing Vb to increase more
sharply.

Generally the granite specimens tested in unconfined compression
at both slow and rapid rates of loading failed in shear; however, a
few failed by vertical splitting. Two basalt specimens tested at a
loading r;te of 50 psi/%ec failed on high-angle planes of approxi-
mately 70.degrees, and one failed by vertical splitting.

The three ;imestone specimens failed by vertical splitting, while
the tuff specimens faiied on planes approximately 65 degrees from the
horizontal. The high shear angle, approximately 65 degrees for the
granite and the basalt, was probably caused by localized stress con-
centrations within the constrained regions of the specimens. If the
specimen length-to-diameter ratio were increased from 2 to about 2.5,
then possibly the failure angle would develop in the specimen midsec-
tion outside the constrained regions. Typical basalt shear breaks are
shown in Figure 3.6.

Most of the available rock mechanics literature that was received
showed that brittle rock, such as granite and basalt, fails by verti-
cal splitting when tested in unconfined compression. This has been
the case at the WES laboratory in the past. However, it was found
that when the specimen ¢énds of brittle rocks were surface grcund, hand

lapped, and tested without a capping material, higher unconfined

L6
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compressive strengths and pronounced shear failures were obtained.
This was found to be true at various rates of leading when the
samples were held within close tolerances; the ends were ground plane
to 0.001 inch, were perpendicular to the side of the specimen within
0.5 degrees, and were parallel to within 0.006 inch.

Figures 3.7 through 3.31 show the relation of stress to axial,
diametral, and volumetric strains of rock specimens tested in uncon-
fined compression. The slow stress-strain curves for the granite,
basalt, and limestone rocks behave elastically to failure, and the
mode of failure is brittle. The rapid stress-strain curve for the
granite behaves elastically to about 90 percent of ultimate stfength.
The rapid stress-strain curves for the basalt behave elastically to
about 45 percent of ultimate strength, then behave plastically to
failure. The rock is characterized by a slight ductile failure.

The dynamic stress-strain curves for the limestone are highly irreg-
ular; however, there is no clear explanation for this. Both the slow
and rapid stress-strain curves for the tuff rock behave plastically,
then elastically, and then plastically again towards failure; the
mode of failure is ductile.

Results of the slow and the rapid unconfined ccrpression tests
show a significant difference in ultimate strength and total axial
strain with the excertion of the granite. The granite (Operation

Flint Lock, Shot Pile Driver, NTS) used for the unconfined compressive

L7
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strength tests was weaker than the same granite tested in the past at

the Concrete Division, WES, and at the Missouri River Division Labora-

tory, Omaha, Nebraska. Previous tests have shown that the slow com-

pressive strength of the Pile Driver granite ranges from about 19,000

to about 31,000 psi, with an average of 25,000 psi (Reference 36).

Evidently, the granite cores used for testing in this program were

at the lower end of the strength range. The dynamic compressive

strength factor féd for granite was less than one.

Both strength and total axial strain at failure for the lime-

stone and the tuff increased under rapid loading. The féd for the

jimestone was 1.52, and the axial strain at failure under rapid
loading was approximately 2.6 times greater than the strain under

slow loading. The féd for the tuff was 1.7k, and the increase in

axial strain at failure wes about 2,267 win, or about 1.6 times

greater under rapid loading. The tuff féd appears to be quite high

compared with that of the other two rock types; however, additional

rapid testing would have to be done to determine the validity of
this factor.

As stated earlier, the bé$alt rock was selected for further con-

fined and unconfined compressive testing. Additional triaxial tests

were run at loading rates of 1, 500, and 2,250 psi/sec, and addi-

tional unconfined tests were run at loading rates of 1, 500, and

2,06 X 107 psi/sec. In summary, the loading rates for the basalt

- L8
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rock ranged from 1 to 1.60 x 10 psi/sec. The average slow compres-
sive strength of the basalt was 21,460 psi, and the rapid compressive
strength was 29,020 psi. This is an increase of 7,560 psi for a

compressive strength factor f; of 1.35. The difference between

3
the average rapid and the average slow axial strain at failure was
2,940 pin/in, with the rapid strain being greater. Slow diamet-

ral strain at failure was slightly greater than the rapid strain at
failure, i.e., 140 uiq/in greater. Figures 3.32 and 3.33 show the
effects of increased rates of load on the unconfined compressive
strength and total axial strain at failure of the basalt specimens.
It can be seen from these graphs that loading rates up to 500 psi/sec
do not have a pronounced effect on total axial strain and only a
slight effect on the compressive strength. However, at higher rates
of loading both strength and axial strain increase considerably.
Figure 3.32 is a plot of the relation between loading rates and ulti-
mate compressive strength. This plot definitely shows a considerable
inc?ease in strength with an increase in rate of loading. The curve
of best fit for the data is very good for both ends of the curve;
however, the center portion of the curve could ve improved consider-
ably if additional data were obtained between decades 1O3 and 106.
The data were fitted with a least-squares polynomial curve fit pro-
gram taken to the third order, GE program No. CD 225H6.00%, with the
3

form y =a + bx + cx2 + dx
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Intuitively one might expect that total axial strain at failure
would decrease with an increase in rate of lodding. This is graphi-
cally shown in Figure 1.1 for relatively low rates of loading. How-
ever, the test data presented herein show this not to be true at
faster loading rates. Reference 37 reports that similar results were
observed during testing of concrete cylinders utilizing streésing
rates vanging from 7.1 to 1.7 X 106 psi/sec. Results of tests re-
ported in Reference 38 also indicated an increase in axial strain at

failure with an increase in stressing rates. \
i

One explanation for the increase in rapid axial strain at failure
over slow axial strain at failure may be the fact that a; the rock
begins to fail under dynamic loading, the rock midsectioﬁ on which
the strain gages are bonded breaks away intact and continues to
strain. High-speed movies taken at WES of rock cores failing under
rapid loads show that the core fails in a cone break. This type
of break normally leaves the midsection intact after failure.

A curve of best fit for the strength-strain data shown in Fig-
ure 3.33 was judged to be in the form of a curvilinear equation of
form y = axb . ‘The solution for the equation coefficients, a and b ,
and other pertinent statistical parameters was handled by a computer
program, OCE No. O4-G1-25-002 (Reference 39). This program uses the

method of least squares for & curvilinear regression to determine the
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equation coefficients of the line of best fit fof the input data.
Figure 3.34 shows the relation of loading rate and total axial
strain at failure for basalt. Figure 3.35 shows that with an increase
in loading rate, the total diametral strain at failure decreases i
slightly. Figure 3.36 shows the relation of loading rate and modulus.
of elasticity taken at one-half the ultimate compressive strength.
The variation in modulus at a given loading rate is quite wide, and
additional data should be developed to verify the increase in modu-
lus with increased rates of loading. Curves of best fit were obtained
by using the previously mentioned OCE computer pro;. am.
Figures 3.37 through 3.58 show the relation of deviator stress

(0, - 0,) to axial, diametral, and volumetric strains. Figurés 3.59

1 3)
through 3.61 and Figure 3.5 give results of the compressional wave
velocity tests and show the relation between wave velocity and devi-
ator stress. Figures 3.62 through 3.68 are plots of Mohr circles that
show the relation of normal stress to shearing stress; the angle of
internal friction ¢ and the shearing stress c¢ are given for each
rock type. These figures also show the observed failure plane in the
core. Data from basalt rock tested in triaxial compression at load-
ing rates of 1, 50, 500, and 2,250 psi/sec are interesting in regard
to the loading rates at a specific confining pressure 03 . Figure

3.52 shows that at 03's of 250 and 1,000 psi the maximm deviator

stress ¢ increased with increased loading rate except for the

51
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specimens loaded at 50 psi/sec. At a 03. of 5,000 psi, ¢ in-
creased throughout the full range of 1oadiﬁ5'rates used. Total axial
strain increased in all cases with an increase in loading rate at
each of the 03'8 used except at a 03 of 250 psi and a loading
rate of 50 psi/sec.

From the data presented for the unconfined compression tests
(Figure 3.69) and the above-described triaxial compression tests, it
is evident that at least the basalt rock behaves consistently under
various rates of loading, i.e., bqth strength and axial strain
inérease. :

The tuff rock was the only one tested that showed a decrease in
deviator stress with increased confining pressures. The rock was
tested at a natural moisture content of approximately 21 percent and
in the undrained state. The pore pressure buildup due to confining
pressure and axial loading probably caused the pore pressure to break
down some of the rock structure, thereby causing lower strengths at
incrcaseu confining pressure. This fact is cited a aumber of times
in the literetu-e that was reviewed. Should additional triaxial
testing be done, the effect of pore pressure should definitely be
accounted for in termc of effective stresses o' = o0 - u , where ¢'=
effective stresses, o = applied axial stress, and u = pore precsure .

The results of the compressional wave velocity tests, which were

conducted along with the triaxial compression tests, agree quite well
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with the test results found in the literature search. There were

twelve tests run, and in all cases except one the compressional wave
velocity increased sharply when the axial stress was increased to

about one-half of the ultimate stress. The velocities then leveled
off until just before failure; at failure, they either remained con-
stant or decreased slightly. Velocities also increased with in-
creased confining pressure. The increases in velocity from zero to

maximum deviator stress for the rocks tested are given below:

FreC S M D M A AT U

Rock Factor by Which Velocities Increased at Indicated
Confining Pressures
250 500 1,000 1,500 4,000 5,000
psi psi psi psi psi psi
Granite 1.09 -- 1.10 -- 1.0k4 --
Basalt 1.03 - 1.06 - -- 1.12
Limestone 1.10 - 1.0 - -- 1.10
Tuff -- 1.23 1.21 1.27 - --

W I

AWy

change was constant.
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No distinct correlation could be made between the compressional
wave velocity versus deviator stress and the volumetric strain versus
| deviator stress curves. Generally though, the comnressional wave
velocity curve was at a constant leyel, or at its highest value when

the volumecric curve was expanding, i.e., just after the volumetric
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For 8ll practical purposes, the straight-line relaticn described
by Moar's criterion T =c + ¢ tan § where T is the shearing
stress, ¢ 1is referred to as cohesion, 0 1is normal stress on the
failure plane, and § is the angle of internal friction, fits most
of the stress circles presented ftor the grenite and basalt. A curvi-
linear analysis would best fit the stress circles presented for the
limestone rock. No envelope was drawn for the results of the tuff
rock due to the decrease in deviator stress with increased 03 .
Nearly all the observed shear failure planes. did approach those pre-
dicted from Mohr's criterion (¢ = 90 - 2¢). This cen be seen in the

following tabulation.

Rock Loading 03 Ob§erved Predicted Envelope

Rate Failure Failure Angle

Angle =9 -2¢

psi/sec psi degrees degrees degrees
Granite 50 250 52 ‘ 72 54
Granite 50 4,000 50 72 54
Basalt 1 1,000 61 77 --
Basalt 1 5,000 = x --
Basalt 50 250 60 72 54
Basalt 50 1,000 63 72 54
Basalt 50 5,000 63 72 S5k
Basalt 500 250 Tl 70 50

(Continued)
54
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Rock Loading 03 QObserved Predicted Envelope

Rate Failure Failure Angle

Angle ¢ = 0 - 2¢

psi/sec psi degrees degrees degrees
Basalt 500 1,000 75 70 50
T salt 500 5,000 70 70 50
Basalt 2,250 1,000 Th T8 55
Basalt 2,250 5,000 72 73 55 :

Figure 3.70 shows Mohr envelopes for the basalt rock at loading

rates of 1, 50, 500, and 2,250 psi/sec. There is very little dif-
ference in ¢ at the lower 03'5 and at the higher 03's with the
3 exception of the envelope developed from specimens loaded at a rate 5,“

of 50 psi/sec. The ¢'s of envelopes at the tangent point of the

1,000~ and the 5,000-psi o, stress circles are presented below.

3
’ .
1,000-psi oy Circle 5,000-psi oy Circle 4
Loading Rate ¢ Loading Rate g . 'Qﬁ ‘
‘ i

: psi/sec degrees psi/sec degrees '
t i .
: ' <
4 1 == 1 1 4l = :
i 50 Sk 50 .16
{
é 500 50 500 L7
; 2,250 55 2,250 46
3
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The data on the previous page indicate that basalt under triaxial
stresses is not greatly affected by loading rates ranging from 1 to
2,250 psi/sec with regard to @ . and that Mohr's criterion of
failure fits the basalt rock quite well. Generally, the observed
angles of failure ao increase with increased rates of load at a given
confining pressﬁre; however, the method of measuring these angles is
rather crude and not taken as very accurate. The cohesion values for

the loading rates used are presented below:

Loading Rate Cohesion (c)
psi/sec psi
1 -
50 3,800
500 3,900
2,250 3,700

Here again there is no clear indication that loading rates signifi-
cantly affect cohesion of basalt at rates up to 2,250 psi/sec.

Figures 3.71 through 3.73 are charts showing the engineering
classification for the intact rock specimens tested during the proj-
ect. This classification system is the one referred to earlier in
Reference 32. Generally, the data reported herein fell very close
to similar rock data plotted in Reference 32,

Figures 2.74 and 3.75 show the relation of axial stress to

56
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lateral stress at failure in triaxial compression at various loading
rates for the rock tested during this program. The data shown in
Figure 3.34 are consistent with data found in the literature search.
However, there were no data found during the literature search on any
one rock that had been subjected to triaxial loading at different
loading rates. The results of this investigation show that as the
rate of loading is increased, for a set of confining pressures, a
straight-line equation exists; the samples tested at a loading rate

of 50 ps;/sec are an exception to this statement.
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SULGS
Spec=  Hole lic, Derth Specitic Toros= Compres- Direcst Tensile Slow O
imen Gravity ity sional Tension GSplitting - X -
No. : Wae Strength Incent'ined Coryressive
Bulk Solids Velocit, Gl e
pri TLoading Strengtii VYoung's Pois- Strengh
Rate tiodulus son's Pressun
Ratio 1,000,
250
feet pet ft/sec psi psi psi/sec  psi 10° psi psi |
G-1 U-1501-U2 11.1 to 11.7 2,09 2.7 W28 18,8L0 - 1,540 -- - - = -
G-2 U=1501-UZ 7.2 to b4 2,69 2,70  0.33 18,59 -- -- 50 19,790 10,20 0.22 ==
G-k U-15-17 52,6 2.71 2.71  0.10 18,820 = = 0 - - - =
G-5 U-1501-U1 728.0 to 730.2 2.68 2.70  0.63 18,270 - 1,530 - == = =2 ==
G-6 U-15-27 121.0 2.69 2,70  0.29 18,550 1,770 > — o - - --
G-7 U=-15E-01 990.4 2.68 2.70  0.63 18,000 - = o o == = =
G-8 U-1501-Ul 728.0 to 730.2 2,68 2,69  0.33 17,500 1,770 - =5 == B — —
G-10 U-1501-U1 728.0 to 720.2 2.68 2.9 0.29 19,230 -- -- 50 20,110 11.00  0.22 --
G-11 U-1501-U1 1709.0 to 1710.7 2.70 2.70  0.11 19,220 5o = == == = = -
G-13 U-1501-U1 1709.0 to 1710.7 2.06 2,68  0.75 17,430 == =S =s =S oo = ==
G-15 U-1501-U1 1759.9 to 1760.9 2.70 2,71  0.11 19,4k - == 50 22,290 10,30 0.022 --
G-16 U-15-27 178.0 2,68 2.69  0.37 18,720 -- 1,920 -- -- == o= =
G-17 U-15E-01  106.5 2,70 2.70 0.,11 17,850 22 = = = = = =
G-18 U-1501-U1 1759.9 to 1760.9 2.70 2.71  0.11 18,380 = == == == oo == =
G-19 U-1501-U1 -- 2.9 2.69 0.22 18,660 - = = o - - =
G-20 U-1501-Ul -- 2.68 2.69  0.47 18,250 e - -- -z = - 2k ,120
G-21 U-1501-U1 - 2,70 2,70 0,03 18,272 o - = = . = =
G-22 U-15-27 121.0 2,69 2,70 0.29 18,500 - = - - - - =2
G-23 U-1501-U1 -- 2.68 2.69 046  1f,200 o - - == == -z -
G-24 U-1501-U1 -- 2.6c 2,69 0,37 18,470 == == 2 = = - o
Average 2.69 2.69 C.30 13,450 1,770 20,740 10./0 0.22

1,770




Slow Compression Rapid Compression
E Unconfined Compressive Triaxial Comprcssive Strength with Unconfined Comprecsive I
Strength Test Compressional Wave Velocity (Vp) Strength Test

te Modulus son's Pressures of 250, Modulus son's Vp N Rate Modulus
Ratio 1,000, and 4,000 _ Ratio P

Fading Strength VYoung's Pois- Strength at Confining Young's Pois- Initial High 1oading Strength Young's

250 1,000 L. 0

si/sec  psi 10 psi  psi psi psi 10° psi ft/sec  ft/sec psi/sec psi 106 psi
- - - - - - - - -- - - - - - : 3
50 19,790 10.20 0.22 - -- - - -- - - -- - -
- = - - - - 52,540 10,00 0,29 20,660 21,840 -- -- -
- -- = - == 29,320 - 11.30  0.22 18,000 19,9:0 = -- -
50 27,15 11.60 0.22 -- - - - = = == o o =3 ;
- - . = = - - N - - 6.03 x 20° 18,070 10.51 :
- -- - - - = - - - - = 6,95 x 106 20,960 10,03 :
50 22,290 10.30  0.22 == = o o = o= - e == =5
- -- - o= 2k,120 = - 10,70 0,25 18,250 20,050 -- -- -
20,740 10.70 0.22 19,510 10.27
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N —
Unpo- Hole Dipid Spevific torose  Compres-  Tensils Clow Comprs ssion |
met ne Gravity ity sirral splittinge -
No. - Wave Strengtl: sined Tumpres.ive Triexial Comproccive JUecneth with U 'nﬂ
kil “-~lids Veloeity Test Wave Velocedty (V)
Dry -
' Loadine Strength Toung's Tois- Loading Strength st Confining  Young's Foisa
Late Moduds sonl‘s Rate Pressures oI 25C, Modulus son'j
Ratic 1,000, and %,009 psi Rati
%0 1,000 5,000 ]
feot pet t/sec psi . psi/sec  psi 1f psi pst/sec  psi vsi psi 10 psi
B-1  DA-1 75.3 to 76.5 2.70 2.83  -- 17,640 -- Yooy 21,370 L6E 0.2 -- -- - . - -
B-2 NCG-38 - 2468 2.83 5.% 15,650 1,820 -- o - oo = oo - = ==
N B=3  DA-1 138.2 to 140.0 2,07 2.82 .35 16,350 -- 500 21,210 4,80 129 -- - - - = oy
. Bl TiA-1 138.2 to 140.0 2.t7 2,82 5.3% 16,37C e - -- -- - S0 30,005 -- -- s 0.22;
B-5  NoG-hoa (8.5 2.66 2,02 .37 1€ ,090 -- - — .- oo 50 - 3,080 .- k.90 0.17
B-6  NCG-45  73.0 2073 2.9 30 15,270 .- 500 21,410 5,37 3.3 -- .- - -- - o
B-7 Calex -- 2.9 -- -- 1C,430 - 500 22,310 hoon 09 -- oo oo oo oo ==
B-8 Calex - 2,71 - -- 16,590 - = oo - - -- - . = = e
B-9 -- 15¢.8 2,77 2.8 3,0 15,670 -- 50 2,7ho u, 1y L0y -- = -- - -- --
B=-10 -- 157.1 2.73 2.8 3.99 1€,h90 .- P -- -- - -- - -- -- -- --
- B-11 Calex -- 2.70 - -- 14,730 - = o = - -- . = = - oo
B-12 NCG-23  49.0 2.7% 283 a.07 17,700 1,797 -- oo o - -- =5 = . o= =g
. B-13 DA-2 95.0 to 9.5 2,74 2,83 2,11 17,750 oo MOl -- - -- 50C 25,600 A = [ 0.37
B-lk -- 13.2 2,68 283 5.2 17.0.50 = I -- -- -- 1 71,0kt - -- 5,18 0.4¥
B15 NCG-MO  €1.3 2.68 2.85 5.4 5.0 o - .- - . oo -1 L- == - -
E-16  NCG-LO  €1.3 2.68 2,93 5.2 15,¢1C -- oo -- -- -- -- = = - -- =
B-17 NCG-38 bk 2,69 2.82 L.l 17,0 oc - .- - - - - .- - - =
B-18 NCG-38  (hlb 2,40 2.82  u.f) 17.£50 -- o oo od - - - -- = oo --
B-19 DA-2 €7.8 2.68 2.82 5,20 17,30 -- -- - .- - %0 - - ke @R0 6,08 0.14
B-20 DA-2 €7.8 2.68 282 s.a 17,200 -- 2] 20,740 L.2r o - = 55 = oo -
B-21 Calex -- 2.70 - .- 16,800 .- 1 22,590 b7 » oY oo - . - o0 =
B-22  Culex -- 2,70 -- -- 1,550 .- 1 19,920 2.4% o -- - = o= s --
Re23  Calex -- 2,70 .- .- 1,500 = .- -- - -- 1 R 27,88y - IS TIRNR
B-2A  (Cal ¢ - 2,69 == - 16,100 .- - - - = 1 =l -- 33300 WF o.24
B-25 Calex .- 2,68 . - 16,2‘;(2 2,060 -- .- oo S - =3 - == == oo
P-26  Calex -- 2,69 eee -- 1,950 oo -- -- .- -- 500 ee 31,290 .- 3,04 0.2
B=27 Calex - 2.71 - - 4,100 oo -- -- -- - 400 = oo Lagige e .3}
B-28 Calex -- 2.70 -- .- 16,70 | = - .- - - 2,740 70,100 oo o .o n.29
B-2G Calex .- 2,69 - .- 15,000 -- 50 2,20  ©,00  O.X = .. -- = oo --
B~30 Calex - 2.72 - & ]F.‘, 8O OO .. oS .. .- 2,250 oo 35,01 .- bt 0,28
B+31  Calex - 2.70 .- - 1,800 CE) - . "y - 2,000 - _- Sy 503 0,1
Average 2.69 E; E 717,140 1,_900 21,460 _o( 0.32
5Tl
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Slow Compression Rapid Compression ¥ode of Failure

por:f'ined onpressive Tric H . fy: S i
g Triayial CQuomreccive Streagth with Comeressionsd ‘neonvined rorpressive

L Teat
pengti, Test Weve Velouity (V) B Strengtn iest

g 1 ‘1oL U
Strengtn ‘toung's Pois- lrading Strength at Confining  Young's Pois- Initisl Highest Lomding Strength: Young's Pois-

Modulue  son's Rate Pressures of 2% ! :
v 250, Modulus son's V v kate Mocalu g
Fatio 1,000, and 5,000 psi Ratio P . T * Rato
250 1,000 5,000
- 1
si 0 i i i i
, P 107 psi psifsec  psi psi psi loTpsi ft/sec ft/sec  psi/sec pei 10° pst
- 21,370 L.to 0,2 oo - - . .
F ' - - ~ ) B
E 21,80  4.80 .29 -- - )
. - oo - -- -- oo -- Shear at 60 degrees from horizontal 1
-- -- - 0 30,00 -- -- e
30,00 L.£0 0,22 16,060 14,510 -- -- - --  Shear at 63 degrees from horizontal
=5 == 4 - 39 - 4.90 ~.17 16,020 '7,130 = o oo - o
21,410 5.3 0,32 -- e -
22,310 W00 0,25 - . . - -
i = e - - - 206X10° 2h00 3.6 0.2 -
22,740 LY 0.9 -- = - -
o o - =i - - - - - Z
L. oo oo 3.13 ¥ 107 8,170 5.00 0.5 --
co -- -- - -- - - 2.06x:07 2,50 3. 039 -- i i
-- - -- 300 75,600 =5 <o 4,46 0.37 - -- 1
) . 1 = -- -- - Shear at 71 degrees from horizontal
- - - 1,00 .- -- 5.18 0.b41 o
B 3 , i =S oo EI0 -- Vertical splitting
- = b = == 5o -- 2.06 x 10° 03,200 en 0.35 --
o - - - =S -- oo 1.60 x 107 2,120 ho3 0. -
S = - L29x100 3z,300  bie. 020 --
=" b == o0 .- 1.34 x 107 34,580 oo 0.2 oa
e e °0 SI=) o0 L 6,08 O.1 16,67 18,750
- 3 B 5 B ’ - -- -- .- Shear at £2 degrees from rorizontal IR
22,580 b7l 0 . - .. . B - - - B 4
18920 L8 ok - I B - -7 - 1
- - N 1 --enBto - ko 03 -- -
-- - - 1 o oo -- __ Snear at 61 degrees from horizontal
-- - B0 ber 022 . - 1
.- .- -~ - A =i -- .- .- Vertical splitting
— I oo 500 .- 31,0 -- 3.94 0.2 . - -
= - ' - oo -- .. Shear at 75 degrees from horizcntal
.- %00 == - w30 e 0,30 - ‘ =
o0 - o 2,740 25,700 - . et ties ik 0o = Shear at 7C degrees from horizontal
21,250 5.0 O.x = - . N - - o= == Vertical splitting
== - -- 2,250 =4 35,0. . e B -- = .
.- o el 2,250 . - Mgdor 300 wns B -- .- <o Shear vt 7h degrees frce horizontal
- p iy — °= o) .- - - 2
B = =% . Shear at 72 degrees fror horizontal




TABLF 3.3 TEST RESULTS FOR

e e el

LIMESTONE
Spec- Hole Depth Specific Poros=- Compres- Tensile
imen No. Gravity ity sional Splitting
No. ——— Wave Strength Unconfined Compressi-
Bulk Solids Velocity Strength Test
Dry .
Loading Strength Young'
Rate Modulu
feet pect ft/sec psi psi/sec psi 106 Ps
L-2  PFT-1.3 5.5 to 6.5, 2.68 2.70 0.81 19,890 -- 50 9,500 10.42
L-4  FT-1.1  12.1 to 12.8 2.71 2.73 0.69 20,580 - oo — =
L-6  FT-1 68.0 ~2.72 2.73  0.43 20,990 -- -- -- --
L-7  Fr-1 9.0 2.72 2.73 0.40 20,690 -- 50 12,750  12.0Q
L-8  FT-1 82.0 2.70 2.71 0.22 20,760 - 50 11,300 11.28
L-10 -- -- 2.70 2.71  0.33 21,580 -- -- -- --
L-12 PFT-1.0 8.4 t09.1 2.71 2.73 0.55 20,250 -- -- -- --
L-13 FT-l.O 1306 tO 1’4’.8 2.68 2070 0085 19,700 l,’-l»6o - S ==
L-1% Fr-l.1 8.0t0 8.8 2.711 2.73 0.55 20,490 1,100 -- -- --
L-15 FT-1.3 5.5 to 6.5 2.70 2.71 0.29 19,80 1,070 == =5 s
L-17 FT-1 18.6 2.70 2.71  0.k0 22,320 -- -- o2 ==
L-18 FT-1 62.8 2.71 2.72 0.9 20,930 -- -- -- -~
. L-20 FT-1 27.8 2,71 2.72  0.18 21,150 -- -- -- --
Average 2.70. 2.72 0.46 20,710 1,210 11,180 11.23
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Slow Compression Ra
Pig Unconfined Compressive Triaxial Compressive Strength with Uncm;
Strength Test Compressional Wave Velocity (Vp) Stren
Loading Strength Young's Pois- Strength at Confining Young's Pois- Initial Highest TLoading
Rate Modulus son's Pressures of 250, Modulus son's V Rate
Ratio 1,000, and 4,000 psi Ratio
250 1,000 4,000
psi/sec  psi 10° psi psi psi psi 10° psi ft/sec ft/sec  psi/sec
50 §,5oo 10.4k2  0.19 T - - -- -- -- -- --
-- - -- -- 15,150 -- -- 10.80 0.35 20,220 22,250 =
50 12,750  12.00 0.29 -- 25,200 -- 11.80 0.32 21,060 21,960 --
50 11,300 11.28 0.30 - -- o= == = -- -- --
== == -- o= = -- 31,630 9.82 0.32 19,880 21,930 =
-- -- -- -- -- EE -- -- -- -- -- 1.87 % 107
== = - -- == - -- -- -- -- -- 5.80 x lO6
== == -- -- — == -- -- -- -- -- 1.9 x 1 6
j 11,180  11.23 0.26
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ppression

Rapid Compregssion

 Triaxial Compressive Strength with
Compressional Wave Velocity (Vp)

Unconfined Compressive
Strength Test ?

jet Confining Young's Pois- Initial Highest ILoading Strength Young's Pois-
t of 250, Modulus son's V R Rate \ _, Modulus son's
E 4,000 psi Ratio P f : Ratio
,000  L,000
. 6 , 6
psi psi 10 psi ft/sec ft/sec  psi/sec psi 10” psi
-- -- 10.80 0.35 20,220 22,250 -- e -- --
F,EOO - 11080 0-32 21,060 21,960 = == - e
= - —- - -- -- - o - -
o 31,630 9.82 0.32 19,880 21,930 -- -- -- --
PR
S - - S = S 1-87 X 107 37’@0‘ 12003 0-""04
[-- .= .- - - == 5-80)( 106 29,000 11076 0-35
T b = = s e l-,‘|'9 X 106 l"",930 7-61 0-""6
27,070~ 10.46 0.4o
e
-

B Sy e




TABLE 3.4 TEST RESULTS FOR TUFF

Speci- Hole No. Depth “Specitic Poros- Natural Water Compres- Tensile
men Gravity ity Content sional Splitting
No. _— Wave Strength
Bulk Solids Before After Velocity
Dry Test Test
feet pet ft/ sec psi

T-7  Ul2 GO 6U4 10.0 to 12.0 1.93 2.39 19.38 23.2 17.4 6,600 -
T-11 Ul2 GO 6U4 31.5 to 37.0 1.85 2.34 21.77 22.4 16.6 8,640 ==
T-13 Ul2 GO 6U4 31.5 to 37.0 1.92 2.44  21.10 21.0 17.1 7,190 210
T-14 Ul2 GO 6U4 Ll1.k to 42.9 1.94 2.35 17.60 19.7 15.7 8,810
T-15 Ul2 GO 6U4 L4l1.4 to 42.9 1.94 2.43 20.30 19.7 15.6 7,470 130
T-20 Ul2 GO 6U4 67.7 to 72.0 1.92 2.35 18.39 20.4 17.1 7,610 =
T-21 Ul2 GO 6U4 67.7 to 72.0 1.92 2.40 20.29 17.1 1k.1 7,670
T-23 Ul2 GO 6UL 67.7 to 72.0 1.98 2.35 15.90 2k4.7 20.6 8,060 250
T-zﬁ Ul2 GO 6U4 67.7 to 72.0 1.8 2.33 18.95 23.5 17.6 8,190 --
T-25 Ul2 GO 6U4 67.7 to 72.0 1.91 2.49 23.30 20.2 16.3 8,190
T-26 Ul2 GO 6U4 67.7 to 72.0 1.91 2.4  21.80 20.2 16.5 8,000

T-27 Ul2 GO 6U4 67.7 to 72.0 1.91 2.36 19.06 21.9 19.1 8,280 --

Average 1.92 2.39 19.82 21.1 16.9 7,801 197
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_Tensile ) A Slow Compression
Splitting
Strength Unconfined Compressive Triaxial Compressive Strength with
Strength Test Compressional Wave Velocity (Vp)
Loading Strength Young's Pois- Strength at Confin- Young's Pois- Initial Highest Load’
Rate Modulus son's 1ing Pressures of Modulus son's V. VTJ Rate
Ratio 250, 1,000, and Ratio T r
1,500 psi 1
250 1,000 1,500
. . . 6 . . . . 6 . 1 .
psi psi/sec psi  10° psi psi  psi  psi 10° psi ft/sec ft/sec psi,
-- 50 1,560 043  0.13  -- -- -- - = . =
(2l - b2 == - —r oo S=hem) O 04 = S - 8.’4‘( 9
210 . . . . _ . . . _ . . &
-- -- -- -- -- -- -- 3,560 0.878 0.19 7,575 9,64k
130 ad 2 = - . - - - (] o . -
-- -- - -- -- -- 3,610 --  0.333 0.17 6,944 8,413 -
-- = -- == - L4910 - = 0.947 0.25 7,532 9,899 -
250 - == = = -- -- - - - - -- -
-- -- -- -- -- -- == 5 -- == = -- 1.6 4
= 50 1,670 0.77 0.2k - -- - = - - == s
= 50 1,680 0.k0 0.19 - s = - e P - i
-- -- -- - -- -- - - - -- -- -- 3.4
197 1,640 0.53 0.19

65-66
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Slow Compression . Repid Compressien

Triaxial Compressive Strength with Unconfined Compressive ©o-
Compressional Wave Velocity (Vp) Strength Test

. Strength at Confin- Young's Pois- Initial Highest Loading Strength Young's Pois-
ing Pressures of Modulus son's V v Rate Modulus son's ]
- 250, 1,000, and Ratio T P . Ratio
1,500 psi .

250 1,000 1,500

psi psi  psi 106 psi | ft/sec ft/sec psi/sec psi 10.6 psi
- e . . L} -- - 8.M6x10° 4,230 091 0.36
.- - 3,560 0.878 0.9 7,575 9,6uk - = = =
-- 3,610 -- 0.333 0.17 6,94 8,13 == -- v--t~ -
4,910 - - 0947 0.5 7,532 9,859 -- -- --
S T - - - - 1.68x10° 1,850  0.33- ' 0.h2
=R - - - -  3.1x10° 2,590 0.5l 0.9

65-66
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a.

b.

Figure 3.1 Photographs showing

for granite and basalt. The top trace is the time-mark generator
trace with one large division equal to 10 usec. The bottom trace is
the compressional wave velocity signal initiating at 1.5 time marks
(zero time) and arriving 41.5 usec later.

Granite,

. e

Basalt.

traces of compressional wave velocity

67
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a. Limestone.

b. Tuff.

Figure 3.2 Photographs showing traces of compressional wave veloc-
ity for limestone and tuff.
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Figure 3.74 Relation of axial stress to lateral stress at failure
in triaxial ~.mpression tests of rock cores.
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CHAPTER 4

CONCLUSIONS AND RECOMMENDATIONS

k.l CONCLUSIONS

On the basis of results obtained from the various slow and rapid
tests of rocks of four types, the following conclusions are drawn:

1. Nondestructive tests, such as specific gravity, porosity,
and compressional wave velocity tes‘l;s, indicate that all rock speci-
mens within each type were uniform.

2. Results of unconfined compressive testing show that as the

-rate of loading increases, the ultimate strength of the rock increases.

For the basalt rock, the total axial strain and ‘the Young's modulus of
elasticity, as well as the ultimate compressive strength, increase
at rates of loading from 1 to 1.60 X 107 psi/sec. However, the total
diametral strain decreased with increased rates of lcading.

3. The difference in the unconfined compressive strength between
the slow and the rapid rates of loading for the rocks tested varied

considerably. The dynamic compressive strength factor f": for the

d
granite was less than 1; for the basalt, 1.35; for the limestone,
1.52; and for the tuff, 1.Th. -

4. Results of triaxial compression ‘tests on basalt show that
the maximum deviator stress 9 - 03 and total axial strain increase

as both confining pressure and loading rates increase. Loading rates

2




have a pronounced effect on maximum deviator stress with lateral pres-
sures up to 5,000 psi. Apparently, however, loading rates up to
2,250 psi/sec do not have a significant effect on the angle of inter-
nal friction ¢ and the cohesion c¢ of basalt at confining pressures
up to 5,000 psi. Mohr's theory of failure fits the basalt rock quite
well for ¢ and 03 used in this investigation.

5. The compressional wave velocity of rock is affected by in-
creases in both the applied axial stress and confining pressure. Ve=-
locities recorded in the direction of applied stress increase sharply

within about one-half of the maximum deviator stress and then generally

level off until failure.

4.2 RECOMMENDATIONS

It is recommended that additional limestone and tuff rock be
tested under various loading rates to determine the’validity of the
féd presented in this report.

Based on information obtained from the literature search and on
the results of the triaxial tests reported herein, it is recommended
that the effects of pore pressure be taken into account if porous

rock with a high water content (such as tuff) is tested in the future

under triaxial conditions.
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